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Anomalous Fluctuations in Random Walk Dynamics
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The anomalous dispersion of noninteracting particles randomly walking in a
network is considered. It is shown that the existence of large dangling branches
attached to a backbone induces a “1//™-like behavior in the current
autocorrelation function at low frequencies. The waiting times associated with
dangling loops scale like 1~*2 The size of the dangling branches provides a
lower cutoff to the power law behavior. When the side branches are infinite, self-
similar structures, the power law behavior persists up to a zero frequency. The
currents we consider are created either by a bias on the random walk or by a
current source. We consider both the total current, which is often referred to in
the literature, and the current measured at endpoints ofa specimen attached to
a (model) battery. The differences and similarities between the two
corresponding correlations are analyzed. In particular, we find that in the
second case “1/f” noise exists only for large bias. When a statistical distribution
of dangling branches is considered, we find that the largest power of frequency
in the spectrum is 1.13. Much of our results are true when the dangling branches
are replaced by “traps” having waiting time distributions that equal those of the
branches. The waiting time associated with a power law distribution of dangling
loops (m~*: m is the length of the loop) scales like =1~ /2 However, it is
shown that geometry alone can be responsible for the appearance of power laws
in the spectra. Random geometry can be regarded as a model (or source) of
random hopping times.

KEY WORDS: Random walk; anomalous diffusion; 1/f noise; current spec-
tra; percolation.

1. INTRODUCTION

It is by now an established fact that many transport processes can be well
described by random walk models.""”’ These include such diverse
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phenomena as conduction in amorphous semiconductors®**® and dif-
fusion in porous media.!!*14

When conduction by electrically charged particies is considered, one
should always worry about the interactions among the particles. However,
in many cases these interactions can be safely neglected in constructing a
transport model. A known case is that of hopping conduction in semicon-
ductors, mentioned above. In general, when strong screening effects are
present and the gas of electrons (or holes or ions, as the case may be) is
dilute enough, an independent-particle model is expected to be valid, at
least approximately. Even in metals, when one deals with phenomena on
time scales that arc much shorter than the inverse plasma frequency (and
these are really very short times), the electrons can be supposed to be non-
interacting,

In the present work, we analyze the transport properties on a network
on which there are noninteracting random walkers. We investigate the role
of bias as well as the effects of irregular geometry. For sake of definiteness,
we employ an “electrical” language: we deal with “charges,” “currents,” and
even “batteries.” These notions should not be taken literally. Our work
applies to neutral particles as well. In this case, the “battery” is merely a
source of bias (and feedback) for the random walker, as is the mean
velocity of the fluid in the process of diffusion in porous media.

One of the most intriguing phenomena observed in many physical
systems is known as “1/f” noise.!'>’ Many theories have been proposed as
explanations of this effect. It seems quite unclear, at present, whether “1/f”
noise is a universal phenomenon, having a common (mathematical) for-
mulation, or that each observed “1/f” behavior deserves a separate
explanation. The work in this field ranges from that based on the theory of
dynamical systems'®!'”) to models of random hopping in systems with
traps.*>'®#1%) Since the present work deals with random walk on
networks,®*?!) we are obviously close to the latter theories. The difference
between the theory proposed here and the models that include traps is that
we consider the role of geometry as a source of anomalous transport
fluctuations.®®? We show below that a dangling branch in a network that
can delay a random walker (and such objects are easy to construct) can
mimic the effect of a trap. Conversely, given such a branch, one can replace
it by a trap in a way that leaves the transport properties unchanged. In
many systems, however, such geometric traps are the reality: percolation
clusters®® and porous media are typical examples. One can, of course,
have both traps and dangling branches.

The main model to be analyzed below is that of a one-dimensional
segment composed of discrete points each of which is atached to a dangling
or side branch. We choose, for simplicity, a discrete space and time nearest
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neighbor hopping dynamics. The hopping may either be biased or
unbiased. When unbiased hopping is discussed, it is assumed, for sim-
plicity, that the hopping probability w is 1/4 (see also Ref. 22).

We consider two kinds of mechanisms that are responsible for creating
a current through the network: either an external bias or a current source,
injecting particles at a constant rate at one end of the system. One of the
problems discussed below is the nature of the current measured by an
external device.”” We deal separately with the total current in the
network, which is the quantity of interest in many investigations‘>>% and
with the current flowing through an external device connected to the
system.

The method of analysis of the models below is based on the approach
developed in Refs. 20 and 21 and also employs results from a previous
paper by us,*® which we refer to as I. Our approach is fully analytic.

The structure of the paper is a follows. In Section 2 we compute the
properties of current fluctuations and their corresponding spectra for the
model described above, using different boundary conditions and bias
values. In the section we assume that all dangling branches are alike. This
assumption is lifted in Section 3, where we consider a statistical ensemble of
dangling branches. This assumption is obviously more realistic than the
one made in Section 2. Indeed, as we shall see below, it leads to a
modification of the transport properties. Section 4 offers a brief summary
and a discussion -of the results.

2. CURRENTS, CORRELATIONS, AND SPECTRA

2.1. Total Current Correlations

The quantity of interest in this subsection is the toral current in a
sample.®>®) This is a quantity commonly referred to in investigations of
conduction processes; it has been measured, for example, in amorphous
semiconductors.*® We consider a simple system consisting of a straight
segment with dangling loops (see Fig. 1). The dynamics of the particles on

g 00 0.

Fig. 1. The segment with loops (see text).
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this network is that of hopping to nearest neighbors. The randomly
walking particles are assumed to be noninteracting. This model has been
described in 1. As before, the process is assumed to be discrete in time (time
is an integer describing the “number of steps”). Define N_ to be the number
of carriers in the sample, e their effective charge, v,(¢) the velocity of carrier
I, and L the length of the sample. Then the instantaneous total current I(¢)
per unit length is

Y v1) (2.1)

The correlation function of the current fluctuations C(z) is
C(1)=0I(0) 61(¢) (2.2)

where 61(1)=I(t)— I and the bar denotes time averaging. Thus

2 2

e e'n
T3V 80,(0) 6v,(1) = 60,(0) b0,(1) (2.3)

C(t)=

and n is the charge density per unit length. Since all particles are
equivalent, by assumption, we use i=1 in Eq. (2.3).

In the presence of an external field on the backbone a carrier is
assumed to have probabilities p, and p, to go, respectively, to the right
and to the left (the field points from left to right). For definiteness, we
assume p,+ p,=1/2 (if there were no dangling loops, the walker has a
staying probability of 1/2 per step except for endpoints). A walker on the
dangling loop is assumed to have a probability of 1/4 to move to its nearest
neighbor. The rhs of Eq. (2.3) is zero unless the carrier is out of the loop
both at time zero and ¢ (We assume that, once in a dangling bond, the
carrier does not contribute to conduction, i.e., it has zero velocity in the
direction of the field.) If the carrier is not inside a loop at time zero and it
moves one step to the right, then v(0)= 1. If it is not inside a loop at time ¢
and it moves then to the right, it will contribute v(¢) = 1. In this case a con-
tribution of 1 to v(0) v(¢) multiplied by the appropriate probability will be
made. Similar statements are true for motion to the left at both times or for
one move to the left and one move to the right.

Thus, for t#0 a typical contribution to v(0) v(¢) is equal to:

The probability that the carrier is not inside a bond at t=0
(i.e., it is on the backbone) multiplied by
the probability that it moves on its first
step to the right (i.e., p,) multiplied by
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the conditional probability that the carrier

is on the backbone at time f— 1 (given that

it was on the backbone at 1= 0) multiplied by

the probability that its last step is to the right (p,) (2.4)

We have to sum over all possibilities for the first and last steps (right or
left) with their appropriate signs (p3, p3, —pip2, —p2P1). We now con-
sider each of the probabilities in (2.4).

First, the probability for an arbitrary carrier to be on the backbone is
equal to 1/m. This can be easily proven by writing a master equation and
by taking into account the stationarity of the process. Thus: The
probability P, that the carrier is on the backbone at 1=0 is

Py(t=0)=1/m (2.5)

where m i1s the number of sites in a dangling loop.
Define F(r) as the conditional probability that the carrier is on the
backbone at time n + ¢ if it was there at time n. Thus (for ¢t #0)

(171_172)2
m

v,(0) v, (1) = Fi—1), 1>1 (2.6)

Obviously: F(0)= 1. It is convenient to define F(r) for negative values of .
We define

C(F(—1—=2), 1< =2
F(’)_{1 (=1
For =0
1
p(0p =2t (2.7)
m 2m
and
0, (0)= 2102 (2.8)
m

which define the average velocity and mobility in the sample. Combining
Egs. (2.6) and (2.7), we obtain

— 1 1 ,
v,(0) vy(2) :; I:(Sz,o (‘2‘_ (P — P2)2> +(p1—p2)° Fli— I)J (2.9)
Note that by stationarity

0,(0) vy (1) =v,(— 1) v4(0)
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The above definition of F(t) incorporates this time-reversal symmetry into
Eq. (2.9). The generating function (¢ probability in 1) F(z) is given by (we
assume here periodic boundary conditions or an infinite sample)

F=Y,+7Y,(z/2)F (2.10)

Y,, represents the probability of going from a backbone point back to itself
(including just staying there) without visiting any other backbone point.
The second term in Eq. (2.10) represents the set of paths leading from a
backbone point to a different backbone point. It involves a walk inside the
loop of the original point (or staying there, i.c., ¥,,), followed by motion of
a step (to the right or to the left) on the backbone, with probability
(p; + p,)z=12z/2, which is necessary to get to another point, and finally a
subsequent motion to any other backbone point (given by F). Solving
Eq. (2.10) for F, we obtain

F”:—Yﬂ“-T (2.11)

We return now to the current autocorrelation function C(¢) [ Egs. (2.2) and
(2.3)]. By stationarity C(t)=C(—t). Applying the Wiener—Khinchine
theorem and using Egs. (2.3) and (2.9), we obtain the spectrum S(w)
corresponding to C(n):

S(w)= f C(n) e™ (2.12)

n= —x

The contribution of F to S(w) is
Y e F(t—1)=1+2Re[zF(z)]
Recall that

Fe?) = fj e F(n)

n=0

(where z=¢"), ie., it is a Poisson (one-sided) transform. Hence

S(w):%{_z_ln;+(pl;1p2) [_1+n4i’w F(n_l)einw:|

HnH—= —o0

ot _p2>2-27r5(a))} (2.13)
m
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In (2.13) the last term is the Fourier transform of (7)* (which is subtracted
from I(z) 1(0) [see Eq. (2.2}]. Recall that F(r)— 1/m when n— oo by its
definition. Thus, the Fourier transform of F(r) in Eq. (2.13) contains a part
that is (1/m) é(w). This part cancels the term containing d{(w) in Eq. (2.13).
This fact can also be seen from a direct analysis of Eq. (2.11) [see Eq. (A.3)
in the Appendix for the form of Y, (z)].

The spectrum S(w) in Eq. (2.13) can be rewritten

2 2

S(w) 2t {1+ 2(p, — p,)* Re[zF(z)] (PP Zné(w)} (2.14)
Lm (2 m

Note that the nonwhite contribution in Egq. (2.13), which we define as

S,/ (), 1s derived directly from the generating function F(z). This feature

appears to be general.

In Fig.3 a plot of Re[zF(z)] oc S {w) is shown for m=1000. For
small w, we observe that S,(w)~ w~"? with a plateau ranging from o >0
to w= 1/m’ In the Appendix, we present an analytic derivation of this
result using the function Y,, obtained in I. It should be noted that this
behavior depends on the assumed type of side branches (or dangling
bonds). For example, for the structure (blob) depicted in Fig. 2, we have
S{w)~w~"* (see the Appendix). Thus, we obtain a 1/f* behavior with
a=1/2 (for the simple loops) or a=1/4 (for the blob). As in I, the cutoff
for the power law dependence is provided by the length of the dangling
loops. Here the condition is @ > 1/m% The spectrum for the total current
per unit length is

2

S(0)=2" 5 Re 2 F(z)] . _ o (2.15)

.

Fig. 2. The “blob” (see text). Each circle has a length m.
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Fig. 3. Plot of S,(w) against w for m = 1000 for the total current [see Eq. (2.14)].

where 7, is defined in Eq. (2.8). The mean waiting time in a loop « was
calculated in I and was found to equal 2m — 1. Using the definition of [ in
Eq. (2.1), one can write the spectrum as

Pua .
S,((U):FRCZF((ZNZ:(,W (2.16)
This result resembles that of Tunaley,® but is of course deduced different-
ly. Note that the prefactor 7?/N, corresponds precisely to the experimental
findings.

2.2. Current Correlations: Alternate Definitions

Although the current correlations as defined above have properties
compatible with experiment, they are not precisely the quantity measured
by an amperemeter attached to the ends of a system.*) The current, in the
strict sense, is measured outside the resistor and is defined as the net num-
ber of charges passing through a cross section per unit time. Our model
makes possible the use of this (standard) definition for the calculation of
the current correlations and the spectra. (In other hopping models we are
aware of, one deals with infinite or periodic systems, and end effects on
current—measured in a realistic way—are not considered). In this section
we shall consider two models differing by their boundary conditions.
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Consider a segment of length N (with dangling loops, as before) at the
ends of which (,,0” and “N”) there are connected two electrodes. We
consider two possibilities for the boundary conditions at the electrodes.

Model 1. A Current Source at One Electrode. Assume that “0” and
“N” are coupled to reservoirs, keeping the density p, at point “N”
constant. For simplicitly, we choose py=0 (“N” os a sink). We assume
that particles are injected at a constant rate p into the system. The
average current is obviously p. The current at “N,” however, is a fluc-
tuating quantity since (in our model) the charges perform a random walk
from “0” to “N.” Define a set {X} of random variables:

Xi,r(t)v l: 11 27"': py T= —00,..., 1 (217)

associated with the ith particle which was injected at time t and whose
presence at “N” is measured at time ¢ (which is also its time of first arrival,
since “N” is a sink by assumption). If present, this particle contributes one
unit of current measured at “N” and X, ()= 1; otherwise, X, (1) =0. The
instantaneous current at “N” is

I =3 X X0 (2.18)
and
X, .(t)=1 with probability G y(t — 1)
X, (1)=0 with probability | — G y(r —1)

where G (1) is the first passage probability distribution, as defined in L.
From Eq. (2.2) the current autocorrelation function is

C(ty=1(0) I(t) — p? (2.19)
By Eqg. (2.18) we have
C(z):Z Z X:(0) X, A1) — p? (2.20)

The summand in Eq. (2.20) decouples:

X,:(0) X (1) = X,.(0) X () (2.21)

except for i=i" and 7 =1’ (since probabilities for different particles are, by
assumption, independent). In the latter case

Xi,-r(O) Xi,r(t):ér,O'GN([_T) (2.22)
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Hence
Cty= Y X0 X, A0+Y X (0)X,()~p> (223a)
. i#Zilort#1t it
Thus
= ¥ %0 X0
=YX, 0) X, ()+) X, (0) X, (1)~ p? (2.23b)
Since
X..(t)=Gplt—1)
and

X..()=0 for 1<t

by its definition, and since Y * ,Guy(n)=1 (see Refs. 20 and 21), we
obtain, using Eq. (2.22),

Clt)=pd,0—p Z G n(n) Gy(n+1) (2.23c)

n=0

The absolute value in Eq. (2.23c) comes from stationarity. Note that the p*
term in Eq. (2.19) is cancelled by the first term on the rhs of Eq. (2.23b),
which is fully decoupled. It is interesting to note that for nonzero times the
correlation C(¢) is negative. The reason for this feature is the fact that a
positive fluctuation of the current at “N” leads to a depletion of “charge”
near “N,” thus making the subsequent current less than its average. A
similar argument holds for a negative fluctuation. This process can be
regarded as a result of the “tendency” of the system to restore the average
current following fluctuations. The spectrum S(w) corresponding to
Eq. (2.23c) is

S(w)=p—p i e’ i Gpn) Gpy(n+1) (2.24)

n=0

The last term in Eq.(2.24) can be evaluated as follows. It is shown in
Appendix B of T that for the system with which we deal here, G y(n) is of
the form Cn~>? in the range m*>> n> N (C being a constant). For n > m?

the decay of G y(n) is exponential and for # between N and eN? (cis a real
number satisfying 1/N<e<1), Gu(n) rises steeply from zero
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[Gn(N—1)=0]. Thus, in order to compute the sum in Eq. (2.23), we shall
model Gx(n) in the following way:

0, n<eN?
Gyn)=(Cn 7  eN’<n<m?
0, m?><n

Substituting this equation into the sum and approximating the sum in
Eq. (2.24) by an integral, we obtain

C()~ —C zfmz——ﬂ————nb
(1)~ 4 2 [n(n—}—l)]m P
Defining » = iz, we have
—Cp? dp
C(Z)N 12 JPN“/T [ﬁ(ﬁ+ 1)]3/2
dap

—CCp? dp  Cp?
~ JzNZ/IﬁS/Z o L [ﬁ(ﬁ+1)]3/2+p

[2

where eN?/t <5 < 1. When m?/t > 1 we obtain

20p? 1 /"] Cp?
C(r)z_t-z”—[aw_ﬁ@ ] =P k() +

where k(d) is a constant. Thus, the leading term for small @ (but @ > 1/m?)
in the Fourier transform of C(z) is of the type —A\/a with 4 a constant.
Hence

2Cp?
Slw)=p
(@ fo

The spectrum we have obtained contains a nonanalytic negative and non-
white part. This result should be contrasted with those of Nieuwenhuizen
and Ernst® and Lehr er al,?® in which S(w)= const + w2, when the
total current is investigated. It would be interesting to find a system that
exhibits this kind of behavior.

We now present a more realistic system, which has feedback.

Model B. A System with Positive Feedback. The system is shown
in Fig. 3. A particle arriving at “N” enters the “electrode” and is
immediately transferred (on the next step) through a resistanceless battery
to “clectrode” “0.” It secems to us that this system is more realistic than
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o U 0

Fig. 4. The segment with positive feedback. The current is “measured” in the “amperemeter”
A outside the system.

model A. The outgoing current is directly related to the incoming current,
thereby producing feedback. The role of the battery is to create the bias
inside the resistor by keeping the voltage constant. The number of carriers
N, is obviously kept constant. The system is periodic, with the exception of
two sites. At “0” the probability of returning to “N” is zero, while at “N”
the probability to get to “0” is unity. Define, as before, a set of random
variables { Y} as follows:

. . . < . < ) b [ 1%L} M
Y (1) = {1 if the ztb particle (I <i< N,)iq at “j” at time ¢ (225)
- 0 otherwise
The current measured by the amperemeter at time ¢ is thus
N,
)=} Y1) (2.26)
i=1
The correlation function C(t) is
Ne  Ne B
C=3 Y Yiu0) Yin()-1 (2.27)

i=1 i"=1
Since we are dealing with noninteracting particles, all the terms in
Eq. (2.27) decouple except the one with i=/’, for which we may write
N
2 Yin0) Yinlt)
=D 0t N,
x (Probability that carrier i is at “N” at t =0)

x [ Probability of a transition from “N” to “0” in one step
(which equals 1)]

x [Probability of a transition from “0” to “N” in ¢ — 1 steps
(not necessarily for the first time) |
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Hence

Ne .

Y Yin(0) Y, \(t)=15,,+N.P(N,0) P(N,1—1; N, 0) (2.28)

i=1
where P(N, 0) i1s the probability to be at “N” at time 0 and P(N, 1; N, 0) is
the (conditional) probability of a transition from “0” to “N” in ¢ steps.
[ The reason for the appearance of t—1 in Eq. (2.28) is the fact that one
step is “wasted” for moving from “N” to “0.”] Substituting (2.28) in {2.27),
we obtain

Ct)= 3 Yin0) You(0)+ 3 Yi(0) Yin(t) =12 (2.29a)
i#l i

Note that for ;s i, the average in Eq. (2.29a) is decoupled (independent

particles). Hence

z Yin0) Yo ) =Y Y a(0) ¥, 0(1)
+3 Y, 00) Y (1) - T (2.29b)

Now, from Eq. (2.26)

ZY,N :",N():i2

Also, by the independence of the walkers,

Z Yin(0) Y u(1) = N. Y A0) Y, (2)

or

Y ¥iu0) Y o(1)= TN,

i

Substituting the above results in (2.29a), we obtain

Z Yin ) — TN, (2.29¢)

Substituting Eq. (2.28) into Eq. (2.29¢), we finally obtain
C(t)=15,0+ N_P(N,0) P(N,t—1;N,0)—I’/N, (2.29d)

Obviously, N, P(N, Q) =71 It remains to calculate P(N,r—1; N;0). Its
generating function H,(z) is found by the following argument.
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A particle located at “N™ goes to “0” at its first step with probability 1,
i.e., the corresponding ¢ probability equals z. It then goes from “0” to “N,”
for the first time, with ¢ probability G y(z). The process can be repeated
indefinitely so that

A (z)=2G p(2) + [2GN(2) P + - (2.30)
and
ﬁN =_M 2131
(=) 1—zG \(z) (231)

The spectrum S(w) is then [see Eq. (2.12)]

S(w)= i—-]iv— 5(w)+ 2 Re H(e™) (2.32)

¢

The term &(w) is calceled by a similar term arising from Re H(e™) (see
below for the structure of H), as happened in Eq. (2.13) above.

In Appendix X of I it is shown that the generating function G (z) in
the case of infinite bias is

Guz)=[(Y,.(2)]1" (2.33)
Hence in this case
3 [4Y,.(2)1"
Hy(z)= (2.34
I :

In the Appendix we show that in this case Re H(e™)~ w ~* for small »
that are still larger than 1/m* A similar power law is presented in Refs. 25
and 26. Figure 5 is a plot of Re H(e™) for N=10 and m =400. In Fig. 5,
Re H(e™) is plotted in the case of zero, intermediate, and extremely large
bias (p; =0.499), p,=0.001). We use the exact expression (C.14) in I for
Gy valid for arbitrary bias. Only in the case of strong bias does one
observe a clear power law behavior. (In I, bias is defined as p; o ¢’ and
paoc e, pi+py=1/2.)

In experiments,> the observed “1/f” spectra are proportional to
I’/N.. To understand this fact, note that N _P(N,0)=1I, P(N,0)=1/N
(homogeneous distribution), and thus I/N = I*/N,. Moreover, H o« 1/N, as
shown in the Appendix (for infinite bias). Hence, from Eq. (2.32)

IRe H(e™) oc T?/N,
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P,=.25
!C — PZ:’25
No BIAS

—— P37
Pox.13

0% e et b soe
P2=.001

i Very strong BIAS

193 1 l I I .
Tons 1073 1074 1073 072 w

Fig. 5. Plots of Re H{e™) [« S {(w)] for N=10, m =400 for three values of blas: p, =0.25
(no bias), p; =0.37, p; =0.499 [see Eq. (2.32)].

as observed experimentally. This result is correct in the limit of large bias.
Thus, the strong bias in experiments is not only necessary to “overcome”
other noises in the system. In our model (and perhaps in reality) the strong
bias is necessary in order to have the effect in the first place.

3. EFFECT OF THE DANGLING BOND DISTRIBUTION

To make our model more realistic it is certainly appropriate to
introduce a distribution P(m) of lengths m of the dangling bonds.

The generating function for first passage G,(z) averaged over all
possible configurations {m} (mg, m,,.,my_;) of the lengths of the
dangling bonds reads

Guz)= Y P({m}) Gulz, {m}) 3.1
{m}
where Gy(z, {m}) is the generating function for realization {m} and
(assuming the different m; to be statistically independent)

P({m})=[[ P(m) (32)

822/48/1-2-20
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Define

Y(z)=Y P(m)Y,(z) (3.3)
{m}

Y(z) can be calculated once P(m) is known. In the case of infinite bias

GN(z>=<§>N > 11 Pom) =3 Y>N (34)
{m} i=0

u ”

Define F,(z, {m}) to be the generating function for motion from site to
any other 51te on the backbone. F, is the generahzatlon of F(z) deﬁned n
Eq. (2.10) for the case of loops of uniform lengths. £, is given (for any bias)
by

Fi:f}m,“i"Ym,pIZFi+1+Ym,p22Ff*1 (35)

In Eq. (3.5) the first term stands for a walk in which the particle does not
leave site “i” to another site in the backbone. The two other terms
represent a walk in which the carrier enters the loop as many times as it
wishes, then does a step to the left (right) and at this site the generating
function to move to another site on the backbone is F,_, (or F,, ). Defin-

ing the configuration average of F, by

F=Y P,F(z {m})

{m}

and approximating

Y,(2) Fiz, {m}) =Y, \(z) F(z, {m})

we obtain
F=Y+Y(z2)F (3.6)

for an infinite system (this is a mean-field-like approximation). In order to
proceed, we need to know the distribution P({m}).

The commonly accepted picture that emerges from percolation theory
is that conduction is limited to the backbone, a substructure of the
percolation cluster. Most of the mass of the cluster is concentrated in the
dangling bnds, which by definition do not participate in the average
conduction. It is reasonable to assume that the dangling bond lengths have
a power-law distribution P(m) up to a cutoff m,. Thus,

P(m) oc m™7, m<m,
(3.7)
P(m) =0, mzm,
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We have used Eq. (3.3) to compute S(w) as given by Eq. (2.32). As before,
we have substituted in Eq. (2.31) the generating function, G, as given in
Appendix C of I. We have replaced ¥,, by its configuration average Y.
Figures 6 and 7 present Re H(e™)a S,(w) versus o for several values of x
{(x=0.1, 0.9, 1.7, assuming strong bias, i.c., p, =0.444 in Fig. 6; and x =2.1
and 2.3, assuming very strong bias, p, =0.499, in Fig. 7). In both figures
N =10 and the cutoff is m, = 1000. (Both figures correspond to the system
with feedback depicted in Fig.4.) It can be seen that S, (w) exhibits a
region in which a power law behavior is observed. For x> 2.3 no power
law regime is obtained. In the Appendix we study analytically the following
two types of spectra: the first is for the case of infinite bias in the system
with feedback (see Fig. 4) and the second is the total current spectrum [on
the basis of Eq.2.16)]. In both cases we show that S (w) oc @ ** with a
breakdown of the power law behavior for x> 2.26. For x=2 the power
spectrum is exactly “1/f” like. Thus, in our model there can be no 1/f*

— X :
10"')— —— X=9

......... X =7
Strong Bias
P, =0.444

10 7t P, =0.056

| | [
168 N i0? o W

Fig. 6. Plots of S, (w) for x=0.1, 0.9, 1.7 for strong bias, where x is the parameter of
dangling bond distribution [see Eqs. (3.7) and (2.32)].
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Fig. 7. Plots of S,(w) for x=2.1 and 2.3 in the case of very strong bias. The break in the
curve also occurs for low values of vias.

spectrum with o > 1.13 (see Appendix ). The generality of this result remains
to be investigated. According to experiments,''> « < 1.4. The relevant value
of x for a percolation cluster or other systems is not yet known. If one
assumes that S, oc @~ is of general validity, it follows that x ~ 2 for most
systems, i.e., P(m) o« m~% Since, as we have shown before, 2m —1 is the
mean time spent in a cluster [see Eq.(4.10) in 1], it follows that the
probability distribution for the mean time 7 spent in a side branch (or a
trap) P scales like P oc 72 (see also Ref. 25, but compare to P~ 17! in
Refs. 15 and 27).

The validity of this result is under investigation.

4. SUMMARY AND CONCLUSIONS

In this investigation we have exhibited a mthod for computing current
fluctuations and the corresponding spctra. We have shown how power laws



Anomalous Fluctuations in Random Walk Dynamics 309

emerge in the spectra as a result of the existence of dangling bonds. The
role of bias in the production of these power laws has been elucidated.
Among our results, we wish to mention the appearance of “1/f” noise,
including a prefactor that is in agreement with experimental findings. We
have seen the role of the length of the dangling bond as a provider of a
cutoff for the power law behavior. In some cases we have observed the
crossover between regions in the spectrum characterized by different power
laws. It is amusing to note that, when one considers the total current in the
system, a “1/f”-like spectrum is possible even in the presence of weak bias.
The current, as measured by a “device” connected to the extremes of the
network, has been shown to have a power law region in the spectrum only
in the presence of strong enough bias. When a distribution of dangling
bond lengths is considered, the nature of the resulting power laws in the
spectrum depends directly on the nature of the assumed distribution.
Having in mind percolation networks, we considered a power law distribu-
tion for the length of the dangling bonds. The resulting power spectrum for
the current was directly related to the exponent appearing in the dangling
bond distribution. This result suggests, at least to some extent, that “1/f”
noise is not really a universal quantity (unless we define the power law
characterizing a distribution of dangling bonds as a parameter determining
a universality class). An interesting feature is the observation that when the
exponent characterizing the distribution of bond lengths exceeds 2.26, “1/f”
behavior is no longer possible in our model.

The extent to which this result is general remains to be seen.

Finally, we wish to comment on the fact that our model is basically
one-dimensional. It seems that in percolating clusters, as well as in other
random systems, the backbone is basically composed of one-dimensional or
quasi-one-dimensional “channels,” which are located quite apart from each
other. Thus, in spite of the one-dimensionality of our model, it may be
more realistic than may appear at first glance. Moreover, our results seem
to be in agreement with those of numerical simulations done on percolating
clusters and with experiments exhibiting “1//” noise (e.g., the prefactor of
the power law) and with diffusion experiments in porous media.

The investigation of current fluctuations in higher dimensional models
is of course a worthwhile project, which we are attempting at present.

APPENDIX

A1. Asymptotic Behavior of the Spectrum for Small w

In this Appendix the term spectrum refers to the nonwhite (i.e., non-
constant) part of the spectrum. The total spectrum is clearly positive. The
nonwhite part, which is computed below, can be negative.
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We first note from Eq. (2.14) that the spectrum of the total current
correlation is proportional to Re[zF(z)]. Using Eq. (2.11), we have

2/z

S(w) « Re ————
(%ZYm)_l -1

(A1)

z =i

The spectrum of the current through the endpoints (the system with feed-
back) is given in Eq. (2.32). The spectrum is proportional to Re H(e™). In
the case of infinite bias (in practice very large) we use Eq. (2.34) and we
obtain
t

2 '(4z7,) "V -1
Note that if we set N=1 in Eq. (A.2) we recover the spectrum in Eq. (A.1)
[apart from the factor z™!' (z~1+iw), which equals unity for small
frequencies, and thus does not influence the asymptotic results]. Thus, we
shall concentrate on the spectrum given by Eq. (A.2), since the spectrum of

the total current autocorrelation is the special case of it.
From paper I [see Eq. (A.11) in I] we have

S(w) oc Re

(A2)

z = e®

L e~
Yol ) = im0 temb)2) (A.3)
where
| 1
“ @) A

For w=0, 8 =2(i(w)"". In the same limit

mb _sin[m(2w)"?] +isinh[m(2w)'?]

—x A5
2 cos[m(2w)'*] + cosh[m(2w)"?] (A.3)
When m\/_a;> 1 and o ~0, then tg(mf/2)~i from Eq. (A.5). Hence
R 2e—iw
Y, x—m—mmm———
" = 2i(iw)? (A.6)
On the other hand, for m\/a <1,
RO AT
"1 = 2imw (A7)

Using Eqgs. (A.2) and (A.6), we obtain for the spectrum in the case of
infinite bias

S(w)oc———l— with —l—<w<i (A8)
2\/§Nw‘/2 m? N? )
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The upper limit for the validity of Eq. (A.8) follows from the fact that in
Eq. (A.2) we Taylor-expand an expression raised to the Nth power.
Therefore, in the same limit, it follows from Egs. (A.1) and (A.6) that the
spectrum corresponding to the total current, for mﬁ >1, s

1
S(w) ot ————
2\/§w‘/2
Here, the range of validity is as in Eq. (A.8), where one substitutes N = 1.

When o < m? the real part of both spectra vanishes, as can be seen by sub-
stituting Y, from Eq. (A.7).

A2. The Dangling Bilob
In IA we introduced the E)lob, ie., a loop-within-loop structure (see
Fig. 2). Y, (m), the analog of Y,,, is [see Eq. (A.30) in I]
. 1

Y = A9
o) 1—(2/2)*7,,{1 £ [1 - (z¥,/2)*]"} "2

The choice of sign in Eq. {A.9) depends on [” [see Egs. (A.23)-(A.27) in 1]:
PR o B 2 720

= — , (A.10)
L+ [1=(27,/2)"]'?
For small w but m./w> | we have, using Eq. (A.6),
iy 2
'~ 1— [‘”21(21(»0)1/ ]1/2 ~1+ 97/4 pin1/8 ) 1/4 (AII)

T+ [ 20(2iw) ]

In this limit, /"< 1 and we must choose the positive sign in Eq. (A.9). Thus,
using (A.6), we obtain from (A.9), in the same limit,

Yy(m) = 2{1 — [ —2i(2iw)"*]"?} (A.12)

The spectrum of the current in the infinite-bias case [see Eq. (A.2)] is
1

S(a)) ocC Re e_‘N+])iw{1 +N[—2l(2lw)]/2] “1}
| | 1 A
S(0) 3y Re gy < 0 (3) o~

Once again we obtain a power law behavior.
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When m\/a <1 we obtain from Eq. (A.7)

= =11 —imw)*]"?
T4+ [ = 11— imw)? ]

~ 1 — 2% exp[(in)>*(mw)'?]

Here I'>1 and we must choose the negative sign in Eq. (A.9). Hence, in
this limit

1
—Le[(1 - imw) — (—2imw)?] !

Y, (m)~
»(m) 1
or

Vo(m) = 2[1 + (—2imw)"?]
Substituting this result in Eq. {A.2), we obtain

1
—WNE DM 4 (= 2imw)'?] NV =1

1
C TN(—2imo)

S(w) oc Re
e

~ R

—1/2

S(w) o w

1
Nm
Thus, when w > 1/m? we have S(w) o« @ and when 1/m?*> o it follows
that S(w)~w ™' (in both limits we must have N\/E<_1 ). It is interesting
to note that in this case the power law does not have a lower cutoff. This is
due to the fact that the blob is infinite. Note that in I it is shown that the
waiting time distribution of the blob has a power law decay n~>*. It can be
shown that for dangling bond structures with waiting time distribution
Y (n)ocn "% then S(w)oc w * This can be deduced from a
Tauberian argument. We recall that ¥, is defined as the Poisson transform
of ¥, (n). If ¥,(n)is given by the power law just described, one obtains
from a Tauberian argument Y,, oc 1 4+ kw* In the limit @ — 0, Eq. (A.2)
yields S(w) oc w ™% by a derivation similar to the one presented here.

—1/4

A3. Distribution of Dangling Bonds
The Y function [see Eq. (3.3)] is

~—X

ff(efw)iz_ K jm" ” (A.13)

\ T—sn0tmoa) "

where m, is a cutoff and k is the probability normalization.
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For w small and m./w>1, Eq. (A.13) reads
A me - m0
2e @ P(e @) a1 + Kef (™) tg = dim (A.14)
1

We consider two regions: mf/2<1 and mf/2>=1. In the first region
tg(mf/2) ~ md/2, whereas in the second tg(m6/2) ~ i. Thus, from Eq. (A.14)

o g% r2/6 me
2e V() 1+ S [ dm ki [ mocdm (AS)
2 4 2/6
Hence
L K2+ K
2 —io Yooy | = -1 (2 — 9)6_ 2
TN S Lt e [ = D42 =018 5
(A.16)

where we have neglected the term in m! %, assuming x > 1 (see text). Note
that from Eq. (A.16) one has that the waiting time distribution behaves like
¢t~ '~ 2 for large ¢ In this limit, S(w) for infinite bias [see Eq. (A.2)] is

o b 2—x
R i C TR [T e VR L B

We distinguish two cases, x <2 and x > 2. In the first case the first term in
the denominator of {(A.14) dominates in the limit § — 0 and
=

1 -1
S@)r g2 T 2= DRy (ATD)

Using 8 ~ 2(iw) for small w, we have

| 2—x)}x—-1)
) e G 1P+ @)

S A(x)o (A.18)

where
A(x)= (2 — x) sin(nx/4) — (x — 1) cos(nx/4) (A.19)

and A(x)>0 for x <2, as it should. When x> 2, the term in 0 in the
denominator dominates. This term is imaginary and will not change the
sign of the spectrum in Eq.(A.17a). At x=2, A(x) changes sign and
becomes negative. For x > 2, S(w) stays positive because of the prefactor
(2—x) in Eq. (A.17b). There is, however, a value x for which the spectrum
becomes negative. This value is found as the solution of the equation

4 2—x

x x-—1

(A.20)
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[ie., A(x)=0]. The solution is x=2.26. Thus, x=2.26 is the limit value
above which no “1/f” noise is possible in our model.
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